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1 Standard Form of Linear Programming

Recall: Linear Programming.

min
x

c⊤x,

s.t. Ax = b,

x ⪰ 0.

Why we need the standard form? 1. For designing algorithm uniformly. 2. Any linear programming can be
transformed into the standard form.

For example, consider the following problem:

min
x

c⊤x,

s.t. Ax ⪯ b.

It is equivalent to

min
x

c⊤x,

s.t. Ax+ s = b,

s ⪰ 0.

Then, let x = x+ − x−, where x+ = max{x, 0} and x− = max{−x, 0}. Finally, it has

min
x

[c⊤,−c⊤, 0]

x+

x−

s


s.t. [A,−A, I]

x+

x−

s

 = b,

x+

x−

s

 ⪰ 0.

Remark 1 • We say the linear program is infeasible if the feasible set is empty.

• The LP problem is unbounded if the objective function is unbouned below on the feasible region. That
is there exists {xt}, such that c⊤xt → −∞ as t→∞.
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• Generally, assume A ∈ Rm×n,m < n is full row rank.

The Lagrangian is
L(x,λ,ν) = c⊤x+ ν⊤(Ax− b)− λ⊤x.

The KKT conditions of the standard linear programming are

A⊤ν + c = λ,

Ax = b,

x ⪰ 0,

xiλi = 0,

λ ⪰ 0.

The dual function is g(λ,ν) = minx L(x,λ,ν) = −ν⊤b, such that c+A⊤ν = λ. Then the dual problem is

max
ν
−ν⊤b (1)

s.t. c+A⊤ν ⪰ 0. (2)

This is equivalent to

max
ν

ν⊤b (3)

s.t. c−A⊤ν ⪰ 0. (4)

Theorem 1 • If either primal problem or dual problem of LP has a finite solution, then so does the
other, and the objective value are equal (strong duality).

• If either primal or dual problem of LP is unbounded, then the other problem is infeasible.

2 Geometry of the Feasible Set

Definition 1 Feasible domain: P = {x ∈n| Ax = b,x ⪰ 0}.

Remark 2 • Hyperplane: a⊤x = β, with a,x ∈n. Closed Half space: a⊤x ≤ β.

• Intersection of a finite number of hyperplanes is a polyhedron. Bounded polyhedron is a polytope.

• Feasible domain is a convex polyhedron due to the intersection of a⊤i x ≥ bi, a⊤i x ≤ bi and xi ≥ 0, i =
1, . . . ,m.

Definition 2 Extreme point of P is the point that can not be expressed by the convex combination of other
points of P .

Theorem 2 P is convex polyhedral and x ∈ P is a vertex if and only if x is a extreme point of P .

Proposition 1 The polyhedron P has only a finite number of extreme points.

Definition 3 A vector d is an extreme direction of P , if {x ∈ Rn | x = x0+λd, λ > 0} ⊂ P for all x0 ∈ P .
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Theorem 3 (Resolution Theorem) Let V = {vi ∈ Rn | i ∈ I} be the set of all extreme point of P and I
is a finite index set. Then ∀x ∈ P , we have

x =
∑
i∈I

λivi + λd, (5)

where ∑
i

λi = 1, λi ≥ 0, λ ≥ 0,

and either d = 0 or d is a extreme direction.

3 Managing Extreme Points Algebraically

Theorem 4 x ∈ P is a extreme point of P if and only if columns of A with respect to positive xi are linearly
independent.

Proof 1 Denote that

x =

[
x̄
0

]
with x̄ =

x1

...
xp

 > 0, and Ā = [A1, . . . , Ap]. (6)

It is easy to check that Ax = Āx̄ = b.

Proof by contradiction. Assume that x is an extreme point but Ā is linearly dependent. Since Ā is linearly
dependent, there exist a w̄ ̸= 0 such that Āw = 0. Therefore, there exist a small number ϵ such that
x̄± ϵw̄ ≥ 0 and Ā(x̄± ϵw̄) = Āx̄ = b. Letting

y1 =

[
x̄+ ϵw̄

0

]
, and y2 =

[
x̄− ϵw̄

0

]
.

It is easy to check that x = y1+y2

2 and y1, y2 ∈ P . That is x can be expressed by the convex combination of
y1 and y2, which contradicts with the fact that x is an extreme point of P .

Now we assume that Ā is linearly independent but x is not an extreme point of P . Then we can represent x
as

x = λy1 + (1− λ)y2, y1 ̸= y2 λ ∈ (0, 1), y1,y2 ≥ 0.

By the form of x shown in Eqn. (6), it holds that

y1 =

[
ȳ1

0

]
. (7)

Now,

x− y1 = λy1 + (1− λ)y2 − y1 = −(1− λ)(y1 − y2) ̸= 0 (8)

where the last inequality is because y1 ̸= y2 and λ < 1. Therefore

A(x− y1) = Ā(x̄− ȳ1) = b− b = 0,

which contradicts the assumption A is linearly independent.
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Let A be an m × n matrix with, we say A has full rank (full row rank) if A has m linearly independent
columns. In this, we can rearrange

x =

[
xB

xN

]
← basic variables
← non-basic variablesA = [ B︸︷︷︸

Basis

, N︸︷︷︸
non-basis

]. (9)

Definition 4 If we set xN to zero and xB is the solution of BxB = b, then we say x is a basic solution. If
xB ≥ 0, then x is a basic feasible solution.

Proposition 2 A point x in P is an extreme point of P if and only if x is a basic feasible solution
corresponding to some basis B.

Theorem 5 (Fundamental Theorem of LP) For a standard form LP, if its feasible domain P is nonempty,
then the optimal objective value of z = c⊤x over P is either unbounded below, or it is attained at (at least)
an extreme point of P .

Proof 2 By the resolution theorem, there are two cases:

Case 1, P has an extreme direction d such that c⊤d < 0. Then P is unbounded and z → −∞.

Case2, P does not have an extreme direction d such that c⊤d < 0. Then ∀x ∈ P , either x =
∑

i λivi or
x =

∑
i λivi + λd̄ with c⊤d̄ ≥ 0.

In both cases, it holds that

c⊤x =c⊤

(∑
i

λivi

)
+ λc⊤d̄

≥
∑
i

λi(c
⊤vi)

≥min
i

c⊤vi

=c⊤vmin.

3.0.1 Simplex Method

We know that the optimal points of LP are extreme points. And the extreme points are basic feasible points.
So, we can use the property of BFP to build the simplex method. The basic idea is

• give a BFS xt.

• Find another BFS by xt+1 = xt + λd.

• Check the objective function increasing or decreasing.

Basic idea: give a BFP x, that is Ax = b,x ⪰ 0. In addition, x =

[
xB

xN

]
, A = [B,N ], BxB = b,xN = 0, B =

[A1, . . . , Am], N = [Am+1, . . . , An],xB = (x1, . . . , xm)⊤.

Denote the fundamental matrix of LP

M =

[
B N
0 I

]
. (10)
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So,

M−1 =

[
B−1 −B−1N
0 I

]
. (11)

It is easy to check that

Mx =

[
B N
0 I

] [
xB

xN

]
=

[
b
0

]
. (12)

Let xq, q ∈ [m+ 1, n] be one of the non-basis variables. Aq is the corresponding column of A, and eq is the
corresponding column of I ∈ R(n−m)2 .

Denote that

dq =

[
−B−1Aq

eq

]
, (13)

then we can check that x(λ) = x+ λdq is a feasible point for Ax(λ) = b. That is

Ax(λ) = A(x+ λdq) = Ax+ [B,N ]

[
−B−1Aq

eq

]
= Ax = b. (14)

Let choose a proper step size λ that can achieve the feasibility of x(λ) ⪰ 0. We know that

x(λ) = (x1 + λdq1, . . . , xn + λdqn).

Definition 5 (reduced cost) The quantity of rq = c⊤x(λ) − c⊤x = c⊤dq = cq − c⊤BB
−1Aq is called a

reduced cost with respect to the variable xq.

Theorem 6 If x = [B−1b; 0] is a basic feasible solution with B and rq < 0, for some non-basic variable xq,
then dq = [−B−1Aq; eq] leads to an improved objective function.

Theorem 7 If x is a basic feasible solution with rq ≥ 0 for all non-basic variables, then x is optimal solution.

Proof 3 x is local optimum. Since linear programming is a convex optimization problem, the local optimum
is the global one.

We need to refine our question: How to choose a proper step size λ that can achieve the feasibility of x(λ) ⪰ 0
when rq < 0.

Then we have two cases:

• If dq ⪰ 0, and it is a extreme directoin of P , we know that rq = c⊤x(λ) − c⊤x = c⊤dq < 0, then
according to the resolution theorem, the LP is unbounded below.

• If there exists i ∈ {1, . . . ,m}, diq < 0, λ = mini∈{1,...,m}

{
xi

−diq
| diq < 0

}
.

Revisit the Simplex method by an example:

min − 4x1 − 2x2 (15)
s.t. x1 + x2 + x3 = 5, (16)

2x1 + 1/2x2 + x4 = 8, (17)
x ⪰ 0. (18)
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In this case, we have

A =

[
1 1 1 0
2 1/2 0 1

]
(19)

The basis B = {3, 4}, for which we have

xB =

[
x3

x4

]
=

[
5
8

]
B =

[
1 0
0 1

]
N =

[
1 1
2 1/2

]
. (20)

It holds that

−B−1N =

[
−1 −1
−2 −1/2

]
d1 =


−1
−2
1
0


x3

x4

x1

x2

c⊤d1 = −4 < 0, λ = min

(
8

2
,
5

1

)
= 4. (21)

xB =

[
4
1

]
x1

x3
B =

[
1 1
2 0

]
N =

[
1 0
1/2 1

]
−B−1N =

[
1
4

1
2

3
4 − 1

2

]
(22)

d2 =


− 1

4
− 3

4
1
0



x1

x3

x2

x4

 c⊤d2 = 1− 2 < 0, d4 =


− 1

2
1
2
0
1



x1

x3

x2

x4

 c⊤d4 = 2 > 0 (23)

xB =

[
11
3
4
3

]
x1

x2
B =

[
1 1
2 1/2

]
N =

[
1 0
0 1

]
B−1N =

[
− 1

3
2
3

4
3 − 2

3

]
(24)

c⊤d3 = 4/3 > 0 c⊤d4 = 4/3 > 0. (25)

Done!

We summarize the simplex method of LP in Algorithm 1.

Algorithm 1 Simplex Method of LP

1: Input: A BFS x ∈ Rn and A = [B,N ]
2: Step 1: Compute rq = c⊤dq. If rq ≥ 0 for all non-basis xq, then the current BFS is optimal. Otherwise, pick up

one rq < 0, go to the next step.
3: Step 2: If dq ⪰ 0, then LP is unbounded below. Otherwise, find

λ = min
i∈{1,...,m}

{
xi

−diq
| diq < 0

}
.

4: x← x+ λdq is a new BFS.
5: Update B and N , and go to Step 2.
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